Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-2308229

ABSTRACT

Different serological assays were rapidly generated to study humoral responses against the SARS-CoV-2 Spike glycoprotein. Due to the intrinsic difficulty of working with SARS-CoV-2 authentic virus, most serological assays use recombinant forms of the Spike glycoprotein or its receptor binding domain (RBD). Cell-based assays expressing different forms of the Spike, as well as pseudoviral assays, are also widely used. To evaluate whether these assays recapitulate findings generated when the Spike is expressed in its physiological context (at the surface of the infected primary cells), we developed an intracellular staining against the SARS-CoV-2 nucleocapsid (N) to distinguish infected from uninfected cells. Human airway epithelial cells (pAECs) were infected with authentic SARS-CoV-2 D614G or Alpha variants. We observed robust cell-surface expression of the SARS-CoV-2 Spike at the surface of the infected pAECs using the conformational-independent anti-S2 CV3-25 antibody. The infected cells were also readily recognized by plasma from convalescent and vaccinated individuals and correlated with several serological assays. This suggests that the antigenicity of the Spike present at the surface of the infected primary cells is maintained in serological assays involving expression of the native full-length Spike.


Subject(s)
Cell Membrane/metabolism , Epithelial Cells/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Bronchioles/cytology , Cells, Cultured , Coronavirus Nucleocapsid Proteins/metabolism , Epithelial Cells/virology , HEK293 Cells , Humans , Neutralization Tests , Phosphoproteins/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
2.
J Med Virol ; 95(4): e28719, 2023 04.
Article in English | MEDLINE | ID: covidwho-2299549

ABSTRACT

The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Innate , SARS-CoV-2/metabolism , Ubiquitin/metabolism , Ubiquitination , Coronavirus Nucleocapsid Proteins/metabolism
3.
Nucleic Acids Res ; 51(9): 4555-4571, 2023 05 22.
Article in English | MEDLINE | ID: covidwho-2275338

ABSTRACT

The pandemic caused by SARS-CoV-2 has called for concerted efforts to generate new insights into the biology of betacoronaviruses to inform drug screening and development. Here, we establish a workflow to determine the RNA recognition and druggability of the nucleocapsid N-protein of SARS-CoV-2, a highly abundant protein crucial for the viral life cycle. We use a synergistic method that combines NMR spectroscopy and protein-RNA cross-linking coupled to mass spectrometry to quickly determine the RNA binding of two RNA recognition domains of the N-protein. Finally, we explore the druggability of these domains by performing an NMR fragment screening. This workflow identified small molecule chemotypes that bind to RNA binding interfaces and that have promising properties for further fragment expansion and drug development.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Coronavirus Nucleocapsid Proteins , Drug Development , SARS-CoV-2 , Humans , COVID-19/virology , RNA, Viral/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Mass Spectrometry , Workflow , Protein Binding
4.
Neurology ; 100(13): 624-628, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2256845

ABSTRACT

BACKGROUND AND OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause a wide range of neurologic complications; however, its neuropenetrance during the acute phase of the illness is unknown. METHODS: Extracellular vesicles were isolated from brain biopsy tissue from a patient undergoing epilepsy surgery using ultracentrifugation and analyzed by Western blot and qPCR for the presence of virus protein and RNA, respectively. Biopsy tissue was assessed by immunohistochemistry for the presence of microvascular damage and compared with 3 other non-COVID surgical epilepsy brain tissues. RESULTS: We demonstrate the presence of viral nucleocapsid protein in extracellular vesicles and microvascular disease in the brain of a patient undergoing epilepsy surgery shortly after SARS-CoV-2 infection. Endothelial cell activation was indicated by increased levels of platelet endothelial cell adhesion molecule-1 and was associated with fibrinogen leakage and immune cell infiltration in the biopsy tissue as compared with control non-COVID surgical epilepsy brain tissues. DISCUSSION: Despite the lack of evidence of viral replication within the brain, the presence of the nucleocapsid protein was associated with disease-specific endothelial cell activation, fibrinogen leakage, and immune cell infiltration.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Coronavirus Nucleocapsid Proteins/metabolism , Nucleocapsid/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Brain/metabolism
5.
Nature ; 615(7950): 143-150, 2023 03.
Article in English | MEDLINE | ID: covidwho-2185940

ABSTRACT

The SARS-CoV-2 Omicron variant is more immune evasive and less virulent than other major viral variants that have so far been recognized1-12. The Omicron spike (S) protein, which has an unusually large number of mutations, is considered to be the main driver of these phenotypes. Here we generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate, and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly owing to mutations in the receptor-binding motif; however, unlike naturally occurring Omicron, it efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although virus bearing Omicron S caused less severe disease than the ancestral virus, its virulence was not attenuated to the level of Omicron. Further investigation showed that mutating non-structural protein 6 (nsp6) in addition to the S protein was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that although the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of the S protein.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virulence Factors , Virulence , Animals , Mice , Cell Line , Immune Evasion , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Humans , COVID-19 Vaccines/immunology , Lung/cytology , Lung/virology , Virus Replication , Mutation
6.
Nucleic Acids Res ; 51(1): 290-303, 2023 01 11.
Article in English | MEDLINE | ID: covidwho-2189413

ABSTRACT

The SARS-CoV-2 nucleocapsid (N) protein performs several functions including binding, compacting, and packaging the ∼30 kb viral genome into the viral particle. N protein consists of two ordered domains, with the N terminal domain (NTD) primarily associated with RNA binding and the C terminal domain (CTD) primarily associated with dimerization/oligomerization, and three intrinsically disordered regions, an N-arm, a C-tail, and a linker that connects the NTD and CTD. We utilize an optical tweezers system to isolate a long single-stranded nucleic acid substrate to measure directly the binding and packaging function of N protein at a single molecule level in real time. We find that N protein binds the nucleic acid substrate with high affinity before oligomerizing and forming a highly compact structure. By comparing the activities of truncated protein variants missing the NTD, CTD, and/or linker, we attribute specific steps in this process to the structural domains of N protein, with the NTD driving initial binding to the substrate and ensuring high localized protein density that triggers interprotein interactions mediated by the CTD, which forms a compact and stable protein-nucleic acid complex suitable for packaging into the virion.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , RNA, Viral , SARS-CoV-2 , Humans , COVID-19/virology , Protein Domains , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Coronavirus Nucleocapsid Proteins/metabolism
7.
Cells ; 11(19)2022 09 23.
Article in English | MEDLINE | ID: covidwho-2043599

ABSTRACT

Circulating cell-free mitochondrial DNA (cf-mtDNA) has been found in the plasma of severely ill COVID-19 patients and is now known as a strong predictor of mortality. However, the underlying mechanism of mtDNA release is unexplored. Here, we show a novel mechanism of SARS-CoV-2-mediated pro-inflammatory/pro-apoptotic mtDNA release and a rational therapeutic stem cell-based approach to mitigate these effects. We systematically screened the effects of 29 SARS-CoV-2 proteins on mitochondrial damage and cell death and found that NSP4 and ORF9b caused extensive mitochondrial structural changes, outer membrane macropore formation, and the release of inner membrane vesicles loaded with mtDNA. The macropore-forming ability of NSP4 was mediated through its interaction with BCL2 antagonist/killer (BAK), whereas ORF9b was found to inhibit the anti-apoptotic member of the BCL2 family protein myeloid cell leukemia-1 (MCL1) and induce inner membrane vesicle formation containing mtDNA. Knockdown of BAK and/or overexpression of MCL1 significantly reversed SARS-CoV-2-mediated mitochondrial damage. Therapeutically, we engineered human mesenchymal stem cells (MSCs) with a simultaneous knockdown of BAK and overexpression of MCL1 (MSCshBAK+MCL1) and named these cells IMAT-MSCs (intercellular mitochondrial transfer-assisted therapeutic MSCs). Upon co-culture with SARS-CoV-2-infected or NSP4/ORF9b-transduced airway epithelial cells, IMAT-MSCs displayed functional intercellular mitochondrial transfer (IMT) via tunneling nanotubes (TNTs). The mitochondrial donation by IMAT-MSCs attenuated the pro-inflammatory and pro-apoptotic mtDNA release from co-cultured epithelial cells. Our findings thus provide a new mechanistic basis for SARS-CoV-2-induced cell death and a novel therapeutic approach to engineering MSCs for the treatment of COVID-19.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins/metabolism , DNA, Mitochondrial , Viral Nonstructural Proteins/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Mitochondria/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Phosphoproteins/metabolism , SARS-CoV-2
8.
Nature ; 609(7928): 785-792, 2022 09.
Article in English | MEDLINE | ID: covidwho-1972633

ABSTRACT

Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.


Subject(s)
Aspartic Acid , Caspase 6 , Coronavirus Infections , Coronavirus , Cysteine , Host-Pathogen Interactions , Virus Replication , Animals , Apoptosis , Aspartic Acid/metabolism , Caspase 6/metabolism , Coronavirus/growth & development , Coronavirus/pathogenicity , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Cricetinae , Cysteine/metabolism , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , Interferons/antagonists & inhibitors , Interferons/immunology , Lung/pathology , Mesocricetus , Mice , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Survival Rate , Weight Loss
9.
mBio ; 13(3): e0130022, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1874506

ABSTRACT

Ubiquitin signaling is essential for immunity to restrict pathogen proliferation. Due to its enormous impact on human health and the global economy, intensive efforts have been invested in studying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its interactions with hosts. However, the role of the ubiquitin network in pathogenicity has not yet been explored. Here, we found that ORF9b of SARS-CoV-2 is ubiquitinated on Lys-4 and Lys-40 by unknown E3 ubiquitin ligases and is degraded by the ubiquitin proteasomal system. Importantly, we identified USP29 as a host factor that prevents ORF9b ubiquitination and subsequent degradation. USP29 interacts with the carboxyl end of ORF9b and removes ubiquitin chains from the protein, thereby inhibiting type I interferon (IFN) induction and NF-κB activation. We also found that ORF9b stabilization by USP29 enhanced the virulence of VSV-eGFP and transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). Moreover, we observed that the mRNA level of USP29 in SARS-CoV-2 patients was higher than that in healthy people. Our findings provide important evidence indicating that targeting USP29 may effectively combat SARS-CoV-2 infection. IMPORTANCE Coronavirus disease 2019 (COVID-19) is a current global health threat caused by SARS-CoV-2. The innate immune response such as type I IFN (IFN-I) is the first line of host defense against viral infections, whereas SARS-CoV-2 proteins antagonize IFN-I production through distinct mechanisms. Among them, ORF9b inhibits the canonical IκB kinase alpha (IKKɑ)/ß/γ-NF-κB signaling and subsequent IFN production; therefore, discovering the regulation of ORF9b by the host might help develop a novel antiviral strategy. Posttranslational modification of proteins by ubiquitination regulates many biological processes, including viral infections. Here, we report that ORF9b is ubiquitinated and degraded through the proteasome pathway, whereas deubiquitinase USP29 deubiquitinates ORF9b and prevents its degradation, resulting in the enhancement of ORF9b-mediated inhibition of IFN-I and NF-κB activation and the enhancement of virulence of VSV-eGFP and SARS-CoV-2 trVLP.


Subject(s)
Biological Phenomena , COVID-19 , Coronavirus Nucleocapsid Proteins/metabolism , Deubiquitinating Enzymes , Humans , Immunity, Innate , NF-kappa B , Phosphoproteins/metabolism , Proteasome Endopeptidase Complex , SARS-CoV-2/genetics , Ubiquitin-Specific Proteases , Ubiquitins , Virulence
10.
J Virol ; 96(12): e0041222, 2022 06 22.
Article in English | MEDLINE | ID: covidwho-1874504

ABSTRACT

SARS-CoV-2 is the causative agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19) and poses a significant threat to global health. N protein (NP), which is a major pathogenic protein among betacoronaviruses, binds to the viral RNA genome to allow viral genome packaging and viral particle release. Recent studies showed that NP antagonizes interferon (IFN) induction and mediates phase separation. Using live SARS-CoV-2 viruses, this study provides solid evidence showing that SARS-CoV-2 NP associates with G3BP1 and G3BP2 in vitro and in vivo. NPSARS-CoV-2 could efficiently suppress G3BP-mediated SG formation and potentiate viral infection by overcoming G3BP1-mediated antiviral innate immunity. G3BP1 conditional knockout mice (g3bp1fl/fL, Sftpc-Cre) exhibit significantly higher lung viral loads after SARS-CoV-2 infection than wild-type mice. Our findings contribute to the growing body of knowledge regarding the pathogenicity of NPSARS-CoV-2 and provide insight into new therapeutics targeting NPSARS-CoV-2. IMPORTANCE In this study, by in vitro assay and live SARS-CoV-2 virus infection, we provide solid evidence that the SARS-CoV-2 NP associates with G3BP1 and G3BP2 in vitro and in vivo. NPSARS-CoV-2 could efficiently suppress G3BP-mediated SG formation and potentiate viral infection by overcoming antiviral innate immunity mediated by G3BP1 in A549 cell lines and G3BP1 conditional knockout mice (g3bp1-cKO) mice, which provide in-depth evidence showing the mechanism underlying NP-related SARS-CoV-2 pathogenesis through G3BPs.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Poly-ADP-Ribose Binding Proteins , SARS-CoV-2 , Virus Replication , Adaptor Proteins, Signal Transducing/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/metabolism , DNA Helicases/metabolism , Host Microbial Interactions/immunology , Mice , Phosphoproteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , RNA-Binding Proteins/metabolism , Stress Granules , Virus Replication/genetics
11.
PLoS Comput Biol ; 18(5): e1010121, 2022 05.
Article in English | MEDLINE | ID: covidwho-1846916

ABSTRACT

The nucleocapsid (N) protein of the SARS-CoV-2 virus, the causal agent of COVID-19, is a multifunction phosphoprotein that plays critical roles in the virus life cycle, including transcription and packaging of the viral RNA. To play such diverse roles, the N protein has two globular RNA-binding modules, the N- (NTD) and C-terminal (CTD) domains, which are connected by an intrinsically disordered region. Despite the wealth of structural data available for the isolated NTD and CTD, how these domains are arranged in the full-length protein and how the oligomerization of N influences its RNA-binding activity remains largely unclear. Herein, using experimental data from electron microscopy and biochemical/biophysical techniques combined with molecular modeling and molecular dynamics simulations, we show that, in the absence of RNA, the N protein formed structurally dynamic dimers, with the NTD and CTD arranged in extended conformations. However, in the presence of RNA, the N protein assumed a more compact conformation where the NTD and CTD are packed together. We also provided an octameric model for the full-length N bound to RNA that is consistent with electron microscopy images of the N protein in the presence of RNA. Together, our results shed new light on the dynamics and higher-order oligomeric structure of this versatile protein.


Subject(s)
Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , COVID-19 , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Microscopy, Electron , Molecular Dynamics Simulation , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Phosphoproteins/metabolism , Protein Binding , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
12.
Nat Commun ; 13(1): 601, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1671558

ABSTRACT

Monitoring SARS-CoV-2 spread and evolution through genome sequencing is essential in handling the COVID-19 pandemic. Here, we sequenced 892 SARS-CoV-2 genomes collected from patients in Saudi Arabia from March to August 2020. We show that two consecutive mutations (R203K/G204R) in the nucleocapsid (N) protein are associated with higher viral loads in COVID-19 patients. Our comparative biochemical analysis reveals that the mutant N protein displays enhanced viral RNA binding and differential interaction with key host proteins. We found increased interaction of GSK3A kinase simultaneously with hyper-phosphorylation of the adjacent serine site (S206) in the mutant N protein. Furthermore, the host cell transcriptome analysis suggests that the mutant N protein produces dysregulated interferon response genes. Here, we provide crucial information in linking the R203K/G204R mutations in the N protein to modulations of host-virus interactions and underline the potential of the nucleocapsid protein as a drug target during infection.


Subject(s)
COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Genome, Viral , Mutation, Missense , SARS-CoV-2/genetics , COVID-19/enzymology , COVID-19/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Host-Pathogen Interactions , Humans , Nucleocapsid/genetics , Nucleocapsid/metabolism , Phosphorylation , Phylogeny , Protein Binding , SARS-CoV-2/classification , SARS-CoV-2/physiology , Saudi Arabia , Viral Load , Virus Replication
13.
Microb Cell Fact ; 21(1): 21, 2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1666655

ABSTRACT

We have developed a method for the inexpensive, high-level expression of antigenic protein fragments of SARS-CoV-2 proteins in Escherichia coli. Our approach uses the thermophilic family 9 carbohydrate-binding module (CBM9) as an N-terminal carrier protein and affinity tag. The CBM9 module was joined to SARS-CoV-2 protein fragments via a flexible proline-threonine linker, which proved to be resistant to E. coli proteases. Two CBM9-spike protein fragment fusion proteins and one CBM9-nucleocapsid fragment fusion protein largely resisted protease degradation, while most of the CBM9 fusion proteins were degraded at some site in the SARS-CoV-2 protein fragment. All of the fusion proteins were highly expressed in E. coli and the CBM9-ID-H1 fusion protein was shown to yield 122 mg/L of purified product. Three purified CBM9-SARS-CoV-2 fusion proteins were tested and found to bind antibodies directed to the appropriate SARS-CoV-2 antigenic regions. The largest intact CBM9 fusion protein, CBM9-ID-H1, incorporates spike protein amino acids 540-588, which is a conserved region overlapping and C-terminal to the receptor binding domain that is widely recognized by human convalescent sera and contains a putative protective epitope.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Escherichia coli/metabolism , Recombinant Fusion Proteins/biosynthesis , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/pathology , COVID-19/virology , Chromatography, High Pressure Liquid , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Mass Spectrometry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptors, Cell Surface/genetics , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism
14.
Nat Immunol ; 23(2): 275-286, 2022 02.
Article in English | MEDLINE | ID: covidwho-1661973

ABSTRACT

The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.


Subject(s)
COVID-19/immunology , Immunity, Humoral , Receptors, Pattern Recognition/immunology , SARS-CoV-2/immunology , Animals , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Chlorocebus aethiops , Complement Activation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Glycosylation , HEK293 Cells , Host-Pathogen Interactions , Humans , Male , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Mannose-Binding Lectin/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , Polymorphism, Genetic , Protein Binding , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serum Amyloid P-Component/immunology , Serum Amyloid P-Component/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
15.
Anal Bioanal Chem ; 414(5): 1773-1785, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653430

ABSTRACT

Nucleic acid tests to detect the SARS-CoV-2 virus have been performed worldwide since the beginning of the COVID-19 pandemic. For the quality assessment of testing laboratories and the performance evaluation of molecular diagnosis products, reference materials (RMs) are required. In this work, we report the production of a lentiviral SARS-CoV-2 RM containing approximately 12 kilobases of its genome including common diagnostics targets such as RdRp, N, E, and S genes. The RM was measured with multiple assays using two different digital PCR platforms. To measure the homogeneity and stability of the lentiviral SARS-CoV-2 RM, reverse transcription droplet digital PCR (RT-ddPCR) was used with in-house duplex assays. The copy number concentration of each target gene in the extracted RNA solution was then converted to that of the RM solution. Their copy number values are measured to be from 1.5 × 105 to 2.0 × 105 copies/mL. The RM has a between-bottle homogeneity of 4.80-8.23% and is stable at 4 °C for 1 week and at -70 °C for 6 months. The lentiviral SARS-CoV-2 RM closely mimics real samples that undergo identical pre-analytical processes for SARS-CoV-2 molecular testing. By offering accurate reference values for the absolute copy number of viral target genes, the developed RM can be used to improve the reliability of SARS-CoV-2 molecular testing.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Genome, Viral , RNA, Viral/genetics , Reagent Kits, Diagnostic/standards , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Gene Dosage , Gene Expression , Humans , Jurkat Cells , Lentivirus/genetics , Lentivirus/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Viral/metabolism , RNA, Viral/standards , Reagent Kits, Diagnostic/supply & distribution , Reference Standards , Reproducibility of Results , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Genome Packaging
16.
ACS Chem Neurosci ; 13(1): 143-150, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1637498

ABSTRACT

First cases that point at a correlation between SARS-CoV-2 infections and the development of Parkinson's disease (PD) have been reported. Currently, it is unclear if there is also a direct causal link between these diseases. To obtain first insights into a possible molecular relation between viral infections and the aggregation of α-synuclein protein into amyloid fibrils characteristic for PD, we investigated the effect of the presence of SARS-CoV-2 proteins on α-synuclein aggregation. We show, in test tube experiments, that SARS-CoV-2 spike protein (S-protein) has no effect on α-synuclein aggregation, while SARS-CoV-2 nucleocapsid protein (N-protein) considerably speeds up the aggregation process. We observe the formation of multiprotein complexes and eventually amyloid fibrils. Microinjection of N-protein in SH-SY5Y cells disturbed the α-synuclein proteostasis and increased cell death. Our results point toward direct interactions between the N-protein of SARS-CoV-2 and α-synuclein as molecular basis for the observed correlation between SARS-CoV-2 infections and Parkinsonism.


Subject(s)
Amyloid , Coronavirus Nucleocapsid Proteins/metabolism , alpha-Synuclein , Amyloid/metabolism , COVID-19 , Humans , Phosphoproteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , alpha-Synuclein/metabolism
17.
Sci Rep ; 12(1): 1005, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1635617

ABSTRACT

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a public health emergency, and research on the development of various types of vaccines is rapidly progressing at an unprecedented development speed internationally. Some vaccines have already been approved for emergency use and are being supplied to people around the world, but there are still many ongoing efforts to create new vaccines. Virus-like particles (VLPs) enable the construction of promising platforms in the field of vaccine development. Here, we demonstrate that non-infectious SARS-CoV-2 VLPs can be successfully assembled by co-expressing three important viral proteins membrane (M), envelop (E) and nucleocapsid (N) in plants. Plant-derived VLPs were purified by sedimentation through a sucrose cushion. The shape and size of plant-derived VLPs are similar to native SARS-CoV-2 VLPs without spike. Although the assembled VLPs do not have S protein spikes, they could be developed as formulations that can improve the immunogenicity of vaccines including S antigens, and further could be used as platforms that can carry S antigens of concern for various mutations.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Vaccines, Virus-Like Particle/immunology , Viroporin Proteins/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Coronavirus M Proteins/genetics , Coronavirus M Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Tobacco/immunology , Tobacco/metabolism , Tobacco/virology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/metabolism , Viroporin Proteins/genetics , Viroporin Proteins/metabolism
18.
Virology ; 567: 1-14, 2022 02.
Article in English | MEDLINE | ID: covidwho-1628759

ABSTRACT

The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Intracellular Membranes/metabolism , Viral Replicase Complex Proteins/metabolism , Amino Acid Motifs , Animals , Cell Line , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Mice , Murine hepatitis virus , Mutation , Protein Binding , Protein Domains , RNA, Viral/biosynthesis , Viral Replicase Complex Proteins/chemistry , Viral Replicase Complex Proteins/genetics , Viral Replication Compartments/metabolism
19.
Cell Death Differ ; 29(6): 1240-1254, 2022 06.
Article in English | MEDLINE | ID: covidwho-1612182

ABSTRACT

A recent mutation analysis suggested that Non-Structural Protein 6 (NSP6) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a key determinant of the viral pathogenicity. Here, by transcriptome analysis, we demonstrated that the inflammasome-related NOD-like receptor signaling was activated in SARS-CoV-2-infected lung epithelial cells and Coronavirus Disease 2019 (COVID-19) patients' lung tissues. The induction of inflammasomes/pyroptosis in patients with severe COVID-19 was confirmed by serological markers. Overexpression of NSP6 triggered NLRP3/ASC-dependent caspase-1 activation, interleukin-1ß/18 maturation, and pyroptosis of lung epithelial cells. Upstream, NSP6 impaired lysosome acidification to inhibit autophagic flux, whose restoration by 1α,25-dihydroxyvitamin D3, metformin or polydatin abrogated NSP6-induced pyroptosis. NSP6 directly interacted with ATP6AP1, a vacuolar ATPase proton pump component, and inhibited its cleavage-mediated activation. L37F NSP6 variant, which was associated with asymptomatic COVID-19, exhibited reduced binding to ATP6AP1 and weakened ability to impair lysosome acidification to induce pyroptosis. Consistently, infection of cultured lung epithelial cells with live SARS-CoV-2 resulted in autophagic flux stagnation, inflammasome activation, and pyroptosis. Overall, this work supports that NSP6 of SARS-CoV-2 could induce inflammatory cell death in lung epithelial cells, through which pharmacological rectification of autophagic flux might be therapeutically exploited.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , NLR Family, Pyrin Domain-Containing 3 Protein , SARS-CoV-2 , Vacuolar Proton-Translocating ATPases , COVID-19/metabolism , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Vacuolar Proton-Translocating ATPases/metabolism
20.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1585891

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL